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ABSTRACT

We review the current status of mode-division multiplexing (MDM) techniques in fibers and on chips. Three system applications are intro-
duced, including quasi-single mode transmission, multicore few-mode amplifier, and fiber sensing. We also discuss the technology develop-
ment trend in terms of multiple-input-multiple-output-free MDM, economics of MDM, and quantum information processing. Finally, we
provide perspectives on emerging applications beyond communications by leveraging the optical properties of high order modes, e.g., nonlin-
ear optics in the visible regime, broadband frequency comb generation, and super resolution endoscopy.
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I. INTRODUCTION

Multiplexing is an essential function in optical signal processing
for a variety of applications, covering communications, computing,
quantum information processing, imaging, sensing, etc. Among the
available physical dimensions of an optical carrier, space may be the
last dimension to explore, and space division multiplexing (SDM) has
received tremendous interest in recent years.1 SDM can efficiently
utilize the cross section area of a fiber or an on-chip waveguide. It has
been achieved mainly by two approaches: The first one is by fabricat-
ing multiple cores in a fiber2 or a densely packed waveguide array on
chip.3 The second approach uses mode-division multiplexing (MDM)
in a few-mode/multimode fiber (FMF/MMF) or a multimode wave-
guide on chip, which supports high order modes. There may be over-
lap between the two categories, such as a coupled core fiber.4

Recently, many applications have emerged using spatial modes as
a resource, which can be divided into two categories. The first category
includes applications that utilize the linear properties of spatial mode
in few-mode fibers (FMFs) and multimode waveguides, including
mode-division multiplexing such as lossless combining in a passive
optical network (PON) because of the extra degree of freedom. The
second category involves nonlinear applications. For example, mode
orthogonality can be used to suppress nonlinear inter-channel inter-
ference. Large mode area and mode orthogonality together lead to
applications in microwave photonic links and long-haul transmission

using quasi-single-mode techniques. All these applications, when
applied in a straightforward manner, are based on mode orthogonality.
But there is a fundamental challenge, i.e., only ideal fibers or wave-
guides offer mode orthogonality. Real fibers and waveguides have
practical limitations, such as mode coupling and mode crosstalk. They
have significant impact on the applications listed above.

In this Perspective, we first review the current status of the MDM
technologies and their integration approaches, covering multimode
fibers, coupled core fibers, MDM on chip, and fiber-chip coupling.
Technical advances in the system aspect of MDM are addressed,
including quasi-single-mode transmission, multicore few-mode ampli-
fication, and fiber sensing. In addition, we discuss the technology
development trend in terms of MIMO-free MDM, economics of
MDM, and quantum information processing-based MDM. Finally,
perspectives on emerging applications beyond communications are
provided.

II. CURRENT STATUS OF MDM TECHNOLOGIES

In this section, we review the current status of MDM technolo-
gies and related device advances in fibers and integrated chips.

A. Multimode fibers

Multimode fiber (MMF) supporting spatially overlapped modes
is attractive in communications and other applications. Mode coupling
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and modal dispersion are the two main impairments need to be dealt
with. Modal dispersion is introduced by the propagation constant dif-
ferences between the modes. In telecommunications, full field of the
mode-multiplexed signal is commonly captured by employing optical
coherent receivers which detect the field directly by interfering the sig-
nal with a continuous wave light as a local oscillator (LO).5 Full field
reconstruction can also be accomplished using intensity-only measure-
ments while mitigating LO with the aid of complementary projections
and a phase retrieval algorithm.6 Modal dispersion and mode mixing
are digitally reversed at the receiver using multiple-input-multiple-out-
put (MIMO)-based digital signal processing (DSP)5 which employs
pilot symbols as part of the transmitted signal to determine the MMF’s
complex coupling matrix and recovers the transmitted information
stream after inversing the detected scrambled signal. High-
performance spatial multiplexers supporting up to 200 spatial modes7–9

enable the large-capacity transmission trials using MMFs.10–12 Mode-
multiplexed 90� 90 MIMO transmission over all nine mode groups of
a graded-index MMF was demonstrated, achieving a record spectral
efficiency of 202bit/s/Hz over a single optical fiber core.12

For the multimode fibers, the bending losses have been exten-
sively studied.13 The critical radius of the curvature with a 3-dB inser-
tion loss is equal to the core diameter divided by the index difference
between the core and the cladding of the optical fibers, which is about
1 cm for an index difference of 1% and a core diameter of 100lm. In
practice, sharp bends of multimode fibers should be carefully taken
care of to avoid extra losses, while the crosstalk may be eliminated by
introducing MIMO processing as long as the transmission matrix of
the fiber is unitary.

B. Coupled-core fibers

Multicore fiber (MCF) is another effective approach to improve
the spatial density, which has different optical paths defined by distinct
single-mode fiber cores.1 Various studies have been reported such as
the 7-core,2 12-core,14 and 22-core15 MCFs, the highest transmission
capacity per fiber can reach 2 Pbit/s.15

Recently, coupled core fibers are proposed to further improve the
aggregate transmission capacity of the optical fiber. It offers many
prominent features such as higher spatial density compared with
uncoupled MCFs,16 reduced impulse responses relative to multimode
fibers (MMFs),17 large effective areas,18 and nonlinear impairments
mitigation.19 The coupled MCF was first proposed to accommodate
more fiber cores inside a limited size cladding by reducing the core-to-
core spacing,16 multiple-in-multiple-output (MIMO)-based DSP is
used to tackle the mode mixing. For the coupled MCFs with single-
mode cores, the number of the guided modes is equivalent to that of
the fiber cores. By optimizing the fiber design parameters such as core-
to-core spacing,17 twist rate and core arrangement,20 the effective
index differences between the modes are comparable to the index var-
iations caused by the perturbations such as bending, twisting and other
fiber deformations,21 as illustrated in Fig. 1. Therefore, all the guided
modes of the coupled MCF can be continuously scrambled along the
propagation, which is referred to as strong coupling regime. The accu-
mulated differential group delay (DGD) and mode-dependent loss
(MDL) both grow with the square root of the fiber length,22 resulting
in a shorter impulse response after long-distance transmission and
helping to improve system performance. Moreover, strong mode mix-
ing enables nonlinear impairments mitigation, which may be regarded

as the most compelling benefit provided by the coupled MCFs.19,23,24

It has been experimentally confirmed that the coupled MCFs outper-
form the single-mode fiber with an identical core design and are more
tolerant to nonlinear distortions.25 Similar to the uncoupled MCFs,
signals can be launched directly into the cores of the coupled MCFs,
which can avoid delicate mode conversion section inevitable for the
MMFs and significantly simplify the component fabrication.
Enormous advantages together with the reported high-performance
components such as spatial multiplexers26 and optical amplifiers27

make the coupled MCF as one of the top SDM schemes for long-haul
and submarine applications.28 In contrast to the coupled MCFs,
MMFs have weak inter-mode-group coupling due to large effective
index differences between the mode groups. The DGD accumulation
of the MMFs scales linearly with the distance. Efforts have been
devoted to transforming the MMFs into the strong mixing regime by
introducing mode scramblers.29–31 Further performance enhancement
to lower the insertion losses and MDL is still needed to sustain long-
distance transmission with dense deployment of the mode scramblers
along the MMF link.

C. MDM based on integrated photonic circuits

Compared with optical fibers, a silicon-on-insulator (SOI) plat-
form is attractive for its property of high density integration32,33 and
complementary metal-oxide-semiconductor (CMOS)-compatible fab-
rication. By employing the orthogonal TE/TM modes in silicon wave-
guides, many on-chip MDM devices have been reported.34 Although
in theory the number of mode channels can be scaled by cascading
multiplexing stages, the performance degradations originated from the
fabrication errors severely limit the scalability. Conventional MDM
devices based on asymmetric directional couplers (ADCs) are sensitive
to the waveguide width variations due to the different dispersion
slopes of the bus waveguide and the access waveguide. This problem
can be effectively solved by engineering the access waveguide with a
subwavelength grating (SWG) structure such that its dispersion slope
matches with that of the bus waveguide. A record high channel count
of 11 was achieved for such an SWG based MDM device;35 mode

FIG. 1. Illustration of the effective indices for the modes supported by uncoupled
MCF, coupled MCF, and MMF.
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channels can be expected using the similar structure. The microscope
image of the device is shown in Fig. 2.

A transmission experiment is carried out to characterize the per-
formance of the on-chip MDM devices. A low-coherence matched
detection method is employed to transmit a 30-Gbaud 8-PSK signal
over a 11-channel integrated MDM circuit.36 The aggregate data rate
can reach 900 Gbit/s while maintaining an acceptable BER value. This
work proves the feasibility of employing on-chip MDM for future
high-capacity optical interconnects for computing systems.

Another important building block is multimode bends, which are
necessary for interconnecting components within the chip area. Sharp
bends may cause mode distortions at the bending regions. Various
multimode bends have been reported based on vertical multimode
waveguide,37 transformation optics,38 curved waveguides,39,40 mode
conversion,41 metamaterial structure,42 etc. It is viable to engineer the
waveguide structure in a bending area to gradually convert the guided
mode and minimize the mode distortion.

D. Mode coupling and conversion between
fibers and chips

In a fiber/waveguide MDM system, a coupling device between
the fiber and the waveguide is indispensable to ensure the mode field
matching. Device footprint, coupling loss, and mode crosstalk are of
important considerations. To seamlessly interconnect the fiber and the
chip, the multimode coupling should be implemented in an integrated
form rather than through discrete components. For example, at a
receiver end, the conventional approach to fiber-chip interconnection
is going through an off-chip de-multiplexing stage through a photonic
lantern and then coupling multiple single mode fibers to the chip,
which can easily use up the limited chip circumference. Therefore,
direct coupling between the fiber and the chip is needed, requiring
good mode matching between the two components through a mode
converter on chip. Co-design of the waveguide mode converter and
the specialty fiber is often considered, providing opportunities in the
two fields.

A mode expander capable of converting the incoming LP modes
from a conventional FMF to TE/TM modes on a chip.43 However, the
implementation has been quite challenging and the scalability is lim-
ited due to the mode profile mismatch between the waveguide modes
and the LP modes. Another possible approach is through employing a
rectangular core fiber (RCF)44 that supports TE/TM modes, which are

naturally compatible with those in a multimode waveguide on chip, as
shown in Fig. 3. Such RCFs may show higher losses than that of con-
ventional FMFs, but could enable convenient interconnects between
chips in short distance scenarios such as data centers. A critical com-
ponent to bridge an RCF and a chip is the mode size converter. We
first study the electric field distributions of a mode expander assisted
by a Si3N4 layer and an RCF by simulations, as shown in Fig. 3(b).
Here we use TE01 mode as an example. It can be noted that the mode
profile in the RCF is different from conventional LP modes and more
like an eigenmode in a rectangular waveguide. The coupling efficiency
is calculated to be 61.7%. Higher efficiency mode coupling can be real-
ized by properly designing the integrated waveguide to achieve better
mode field overlap. Encouraging progress has been made by employ-
ing multiple layers of Si3N4/Si materials.

III. SYSTEMS AND APPLICATIONS BASED ON MDM
A. Quasi-single mode transmission by employing MDM

Fiber imperfections such as inhomogeneities and micro-bending
manifest as a perturbation of the index/permittivity from the ideal
fiber, which randomly varies in all directions.45 The variation in the
propagation can be decomposed into its Fourier components. Some of
these components causes phase-matched coupling between pairs of
spatial modes. It turns out that the strength of these Fourier compo-
nents decays strongly with the spatial frequency owing to the current
method of fiber fabrication and cabling. Therefore, modes separated
by large difference in their propagation constants, or equivalently
effective indices, tend to have weak crosstalk. It has been shown that
FMFs with effective index difference> 1e�3, sufficient for suppressing
mode crosstalk, can be fabricated. The effective areas of these FMFs
can be much larger than that of SMFs, and therefore, can be used to
suppress fiber nonlinear effects. Transmission systems that utilize only
the fundamental modes of the FMFs to break the nonlinear Shannon
limit of SMFs are called quasi-single mode (QSM) transmission
systems. Here is an experimental demonstration of QSM, photonic
lanterns46 are needed at the transmitter/receiver ends for mode multi-
plexing and de-multiplexing, respectively. Figure 4 compares the
transmission performances of three fiber configurations:47 all single
mode (blue), all FMF (red) and hybrid, FMF followed by SMF (black).
The hybrid configuration always performs the best. The all-FMF con-
figuration performed better than the SMF configuration at 2000 km
while the reverse is true at 4000 km. The reason is that the benefit of
large mode area is offset by mode crosstalk. For QSM, it is multipath
interference when the fundamental mode is coupled to the LP11 mode
and then coupled back into the fundamental mode. Mode crosstalk
can also lead the extra losses, if the fundamental mode is eventually
coupled to radiation modes. So, for nonlinear applications, the FMF
not only needs to have large area but also low crosstalk. The QSM
technique has previously been applied in high-power fiber amplifiers
and lasers in which the large effective area of the FMF is used to sup-
press nonlinearity and the selective use of only the fundamental mode
leads to high beam quality (small M2). Recently, The QSM technique
has been applied to silicon photonics.48 In waveguides, the fundamen-
tal mode is always the best confined. As a result, it experiences less
scattering from surface roughness, which cannot be eliminated from
the fabrication process. By selective use of the fundamental mode in
the few-mode waveguide, record low loss has been achieved.
Furthermore, it is expected that the selective use of the fundamental

FIG. 2. Microscope image of the 11-channel MDM device.35 Reproduced with per-
mission from He et al., J. Light. Technol. 36, 24 (2018). Copyright 2018 IEEE.
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FIG. 3. (a) Schematic configuration of a possible short reach MDM link with fully integrated MUX and deMUX components. (b) Simulated electric field distributions monitored
at the edge of an integrated waveguide and an RCF.

FIG. 4. Experimental demonstration of QSM.47 Reproduced with permission from Yaman et al., in Optical Fiber Communication Conference (2015), p. Th5C.7. Copyright 2015
Optical Society of America.

Applied Physics Letters PERSPECTIVE scitation.org/journal/apl

Appl. Phys. Lett. 118, 200502 (2021); doi: 10.1063/5.0046071 118, 200502-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/apl


mode will also make device performance tolerant to fabrication-
induced geometrical variations, thus eliminating the need for thermal
tuning of many silicon photonic devices.

B. Multi-core and multi-mode optical amplification

Multicore and multimode erbium-doped fiber amplifiers
(EDFAs)49–51 can achieve parallel amplification for independent sig-
nals in a compact footprint. Core-pumped uncoupled multicore
EDFA52 employing most conventional components applied in the
single-mode EDFAs, such as wavelength-division mutliplexing
(WDM) combiner and single-mode pump laser diodes, has the poten-
tial to replace an array of single-mode amplifiers. Cladding pumping is
more widely implemented on the SDM EDFAs in order to lower the
cost per bit and total power consumption due to the availability of
uncooled high-power multimode pump laser diodes and efficient edge
pumping schemes. In contrast to single-mode laser diodes, multimode
pump laser diodes are more efficient in electrical-to-optical power
conversion, more tolerant to temperature variations and more cost-
effective. In cladding pumping, pump light is distributed over the
entire cladding but signals are only guided by the cores, which signifi-
cantly reduces the overlap between the pump and signals compared to
core pumping, and usually causes more than half of the pump light
unused at the EDFA output. A multimode pump laser diode with tens
of watts output power is usually needed to achieve a high population
inversion. Increased core and cladding ratio51,53 and pump recycling54

have been applied in enhancing the pump absorption efficiency.
To facilitate the deployment of the SDM fibers to sustain future
high-capacity optical networks, it will be essential to demonstrate
cladding-pumped SDM EDFAs with a comparable pump absorption
efficiency to the core-pumped counterparts.

C. Few-mode fiber sensing

The fiber optical sensing technology has been studied exten-
sively over the last few decades and widely used in the fields ranging
from oil and gas industry,55 structural stability monitoring,56 and
biomedical science.57 Compared with SMFs or MMFs, FMFs support
limited guided modes and each mode in an FMF can be detected
independently and does not introduce severe inter-modal crosstalk.
The operation principle of the FMF-based sensors is based on the
different effective refractive index neff values of the spatial modes.58

Various LP modes in FMFs respond differently when subjected to
environment parameter deviations, such as temperature, pressure,
etc. It is viable to monitor the different responses of the modes and
thus enable full characterization through the enlarged parameter
space. Therefore, FMFs are advantageous in sensing applica-
tions.59–61 Most FMF sensors are based on interferometric struc-
tures,60,62 Bragg gratings,63 or fiber tapers.64

IV. FUTURE PERSPECTIVE AND TECHNOLOGY
DEVELOPMENT TREND

MDM has the potential to significantly scale the transmission
capacity, while several factors are limiting its applications in practical
systems. Here we discuss the challenges, technology developments,
and perspectives for MDM systems. Applications based on the optical
properties of high order modes are also introduced, extending to the
non-telecom fields.

A. Towards MIMO-free mode-multiplexed
transmission

MMF is usually treated as a coupled-SDM solution since it experi-
ences strong coupling between the degenerate modes within the same
mode group and weak mixing between the mode group. MIMO-based
DSP can be applied to undo the coupling after transmission and recover
transmitted signals. System performance is mainly determined by sys-
tem mode-dependent loss, optical signal-to-noise ratio, and indepen-
dent of mode coupling strength. However, MIMO processing is
computationally complex and needs full-field information offered by
coherent detection. High receiver complexity limits MDM applications
in cost-sensitive short and medium-reach optical networks requiring
low-cost and low-power consumption receiver schemes like direct
detection. With respect to receiver-side MIMO, MIMO processing can
also be operated at the transmitter to permit simple receivers. The oper-
ation uses the knowledge of the coupling matrix of the MMF and pre-
distorts the mode-multiplexed signal by multiplying the signal with the
inverse of the coupling matrix to mitigate crosstalk after transmission.
Transmitter-side MIMO can be applied in the optical networks with a
point-to-multipoint topology such as PON where the cost of the central
office can be shared by a group of end users to achieve MIMO-free
MDM transmission.65 Modal crosstalk can also be mitigated employing
optical signal processing such as low-coherence matched detection66

which uses the short coherence length property of amplified spontane-
ous emission noise to decoherence the modes and suppresses coherent
interference through matched detection at the cost of spectral efficiency.

From the fiber design perspective, an all-solid heterogeneous
MCF with non-identical fiber cores was proposed67 and experimen-
tally demonstrated.68 Crosstalk between any pair of cores can be suffi-
ciently suppressed due to the phase mismatch. Measured crosstalk
between neighboring cores can reach –70 dB,69 which is applicable for
MIMO-free transmission. In an MMF, a step-index core profile is
more desired for MIMO-free MDM transmission compared to a
grade-index core MMF.70 The effective index differences between the
modes need to be large enough (>1� 10�3) to suppress mode cou-
pling. Effective index differences between the modes can be further
enlarged through optimizing fiber’s reflective index profile. One exam-
ple is to sectionally tailor the step-index core profile along the radial
direction to fine-tune the effective indices for certain modes.71

Breaking the rotational symmetry of the fiber core, e.g., using an ellip-
tical core, can decouple the modes which normally degenerate in a cir-
cular fiber core, therefore increasing the number of weakly coupled
spatial modes applicable for MIMO-free transmission.72,73

For integrated circuits, the effective refractive indices of the wave-
guide modes are highly dependent on the waveguide dimensions.
Thus, the waveguide width deviations caused by inevitable fabrication
inaccuracies affect the performance of the mode (de)multiplexers. In
addition, due to the small effective refractive index differences between
the waveguide modes, there is always a mode mixing during the
demultiplexing process, which results in significant inter-mode cross-
talk and degrades the performance of the MDM systems. With the
scaling of the mode counts, the complexity of the DSP required by the
MIMO processing would increase significantly. Currently, for a 15-
channel MDM system based on optical fibers, the MIMO complexity
has reached 30� 30, which requires significant computation power.74

To achieve a MIMO-free MDM transmission on-chip, a densely
packed waveguide array (DPWA) may be a promising candidate. By
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employing single mode waveguides with different lateral dimensions,
multichannel MDM with low crosstalk values of –20 dB can be
obtained.3 DPWA structures based on bent waveguides with different
radius75 andmultimode waveguides76 have also been proposed to scale
the MDM channel counts. Anisotropic dielectric perturbations77 can
be further introduced in the spacing between DPWA waveguides to
suppress the coupling between channels, thus realizing a MIMO-free
transmission.

B. Economics of SDM against parallel SMF systems

From a transmission capacity perspective, modal channels in a
FMF are logically the same as multiple single modes in a single-mode
fiber bundle. Whether SDM or fiber bundle wins out will be deter-
mined by the cost per bit for transmission. Therefore, SDMmust pro-
duce enough cost savings elsewhere to offset the additional cost of
DSP. In this regard, SDM may reduce cabling cost. To maintain
robustness and deployability, each optical fiber cable will be limited in
the number of fiber strands, especially for undersea systems. When the
transmission capacity requirement exceeds that can be provided by a
single-mode fiber bundle in one cable, SDM fibers will cost less for
cabling in terms of materials, fabrication, and deployment. The degree
of cost saving in cabling will be proportional to the factor over which
the transmission capacity requirement exceeds a single-mode fiber
cable. Using SDM, transmission capacity increases linearly with power
consumption while transmission capacity using higher-order modula-
tion formats in the limited number of fibers increases logarithmic with
power consumption. Reduce power consumption not only reduces the
electrical part of the cabling costs but also may lend SDM as the only
solution due to power delivery considerations in the undersea environ-
ment. In addition, in SDM, multiple mode channels can be amplified
in a single few-mode EDFA.

C. Quantum information processing

Coupling spatial modes with other degrees of freedom (time, fre-
quency, polarization, etc.) provides a different route to encoding and
processing quantum information in higher dimensions,78 which leads
to more efficient logic gates and noise resilient communications. It
would be fair to say that the development of MDM technology makes
quantum systems more scalable and practical, and the reason for this
statement is twofold. First, multimode waveguides, such as few-mode
fibers, hollow-core fibers, and integrable waveguide circuits, function
as quantum channels for constructing quantum network and distrib-
uting spatially entangled states with improved scalability.79–81 Second,
the Kerr nonlinearity in low-loss waveguides can be used to generate
and manipulate spatially multimode quantum states.82–86 The all-fiber
(or on-chip waveguide) quantum devices, including the sources of spa-
tial entanglement, hyperentanglement of spatial and polarization
modes, and spatial-mode-selective quantum frequency converter etc.,
will pave the way for generation and manipulation of massively multi-
mode qubits or qudits for future quantum computing and information
processing systems.

Currently, the workhorse source of a quantum state in higher-
order spatial modes is generated from vð2Þ nonlinear crystals.78,87 Such
a source, however, is not compatible with MDM transmission links.
When the quantum states are launched into the low-loss transmission
fibers, there exists large coupling losses. This severely degrades the

performance of quantum information processing, because the rate of
quantum communication depends quadratically on the coupling effi-
ciency. Therefore, it is desirable if a quantum light source could be real-
ized by using the Kerr nonlinearity of FMF itself. By doing so, the
source can be seamlessly combined with an MDM transmission system.

Moreover, it is worth noting that the nonlinearities in FMFs
exhibit many phenomena owing to FMF’s wide options for mode- and
dispersion-engineering, leading to the development of various quantum
devices for information processing. Since the quantum device often
involves the manipulation of photons via four wave mixing (FWM) pro-
cesses,84–86 the existence of Raman scattering (RS) degrades the perfor-
mance of these quantum devices. Therefore, the RS accompanying
FWMs in FMFs needs to be suppressed. Fortunately, this shortcoming
can be overcome by properly designing the structures of an FMF and
on-chip waveguide. As a result, the toolset realized on an FMF based
nonlinear-optical platform will be able to efficiently generate, process,
and analyze spatially multimode quantum states, which can greatly
increase the capacity of quantum communications (e.g., quantum key
distribution) and provide the interface between the high-capacity SDM
quantum communication links and quantummemories.

D. Emerging applications

Most on-chip MDM devices do not show resonance or interfer-
ence effects, offering wide operation bandwidths to combine with
WDM technique and, thus, effectively scale up the capacity. Various
approaches have been proposed to realize WDM-MDM hybrid multi-
plexing by combining mode (de)multiplexers with micro-ring resona-
tors88 or arrayed waveguide gratings.89,90 For multimode/few-mode
fibers, their transparency windows normally cover the communication
bandwidths. WDM-MDM schemes based on FMFs,91 MMFs,92,93 and
ring-core fibers94 have been reported as viable approaches to achieve
high-capacity transmission.

The applications we have discussed in this Perspective are com-
munications centric. By leveraging the optical properties of high order
orthogonal modes in MDM, there are many potential applications
beyond telecom that may emerge in the near future. For example,
through dispersion engineering of high-order waveguide modes,95 the
phase matching condition in the visible regime for four-wave mixing
can be satisfied, thus opening an interesting wavelength window for
nonlinear applications. Alternatively, a multimode waveguide can sup-
port the propagation of a fundamental mode with reduced surface
scattering and therefore a very low transmission loss, enabling a
broadband frequency comb generation.48

An MMF with a large number of spatial modes offers diffraction-
limited spatial resolution, which makes the MMFs a strong candidate
in ultra-thin optical fiber-based endoscopy for minimally invasive
in vivo imaging.96–98 50lm field of view can be realized employing an
MMF with a diameter of 60lm in deep brain in vivo imaging.99 To
use the MMF as an imaging system, pre-calibration measuring mode
coupling97 is needed through either phase-shifting interferometry or
off-axis interferometry at the distal end, sharing a similarity to the
coherent detection used in telecommunications. However, the fiber
needs to keep rigid during the whole imaging process. Any perturba-
tion, which changes mode coupling, will result in a fiber re-calibration,
making current MMF-based endoscopy experience limited flexibility
and less reliable compared to the implementation in telecommunica-
tions where adaptive equalizers are capable of fast tracking of mode
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coupling changes.100 Single-ended full or partial coupling matrix esti-
mation demonstrations employing partial reflector,101 spatial pilots,65

and guide-star102 show the potential to realize a perturbation-
insensitive MMF-based endoscopy capable of continuous fiber cou-
pling matrix monitoring without access to the distal end of the fiber.

V. CONCLUSION

We reviewed the current status of MDM techniques implemented
with multimode fibers, coupled core fibers, and silicon photonic chips.
We then discussed typical systems based on MDM: quasi-single-mode
transmission, multicore few-mode amplifier, and FMF sensing. Future
development trends and perspective are also brainstormed, including
MIMO-free MDM transmission, economics of MDM, and quantum
information processing. While most of the discussion is communica-
tions centric, we introduced some non-telecom applications by leverag-
ing the optical properties of high order modes, e.g., nonlinear optics in
the visible regime, broadband frequency comb generation, and super
resolution endoscopy. The optical mode provides an interesting degree
of freedom in physics, because the mode manipulation takes into
account waveguide design, offering a rich space to explore in scientific
research and technology development. Many breakthrough techniques
and applications of MDM can be envisioned in the near future.
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